Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 96(7): e0199521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1745826

ABSTRACT

C-type lectin domain-containing proteins (CTLDcps) shape host responses to pathogens and infectious disease outcomes. Previously, we identified the murine CTLDcp Cd302 as restriction factor, limiting hepatitis C virus (HCV) infection of murine hepatocytes. In this study, we investigated in detail the human orthologue's ability to restrict HCV infection in human liver cells. CD302 overexpression in Huh-7.5 cells potently inhibited infection of diverse HCV chimeras representing seven genotypes. Transcriptional profiling revealed abundant CD302 mRNA expression in human hepatocytes, the natural cellular target of HCV. Knockdown of endogenously expressed CD302 modestly enhanced HCV infection of Huh-7.5 cells and primary human hepatocytes. Functional analysis of naturally occurring CD302 transcript variants and engineered CD302 mutants showed that the C-type lectin-like domain (CTLD) is essential for HCV restriction, whereas the cytoplasmic domain (CPD) is dispensable. Coding single nucleotide polymorphisms occurring in human populations and mapping to different domains of CD302 did not influence the capacity of CD302 to restrict HCV. Assessment of the anti-HCV phenotype at different life cycle stages indicated that CD302 preferentially targets the viral entry step. In contrast to the murine orthologue, overexpression of human CD302 did not modulate downstream expression of nuclear receptor-controlled genes. Ectopic CD302 expression restricted infection of liver tropic hepatitis E virus (HEV), while it did not affect infection rates of two respiratory viruses, including respiratory syncytial virus (RSV) and the alpha coronavirus HVCoV-229E. Together, these findings suggest that CD302 contributes to liver cell-intrinsic defense against HCV and might mediate broader antiviral defenses against additional hepatotropic viruses. IMPORTANCE The liver represents an immunoprivileged organ characterized by enhanced resistance to immune responses. However, the importance of liver cell-endogenous, noncytolytic innate immune responses in pathogen control is not well defined. Although the role of myeloid cell-expressed CTLDcps in host responses to viruses has been characterized in detail, we have little information about their potential functions in the liver and their relevance for immune responses in this organ. Human hepatocytes endogenously express the CTLDcp CD302. Here, we provide evidence that CD302 limits HCV infection of human liver cells, likely by inhibiting a viral cell entry step. We confirm that the dominant liver-expressed transcript variant, as well as naturally occurring coding variants of CD302, maintain the capacity to restrict HCV. We further show that the CTLD of the protein is critical for the anti-HCV activity and that overexpressed CD302 limits HEV infection. Thus, CD302 likely contributes to human liver-intrinsic antiviral defenses.


Subject(s)
Hepacivirus , Hepatitis C , Lectins, C-Type , Receptors, Cell Surface , Antiviral Agents/metabolism , Hepacivirus/physiology , Hepatitis C/immunology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Virus Replication
2.
Sci Rep ; 12(1): 330, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1617001

ABSTRACT

We conducted a systematic review and meta-analysis of studies assessing HCV infection rates in haemodialysis patients in Brazil (Prospero CRD #42021275068). We included studies on patients under haemodialysis, comprising both convenience samples and exhaustive information from selected services. Patients underwent HCV serological testing with or without confirmation by HCV RNA PCR. Exclusion criteria were the following: absence of primary empirical information and studies without information on their respective settings, study year, accurate infection rates, or full specification of diagnostic tests. Studies with samples ≤ 30 and serial assessments with repeated information were also excluded. Reference databases included PubMed, LILACS, Scopus, and Web of Science for the period 1989-2019. A systematic review was carried out, followed by two independent meta-analyses: (i) studies with data on HCV prevalence and (ii) studies with a confirmatory PCR (i.e., active infection), respectively. A comprehensive set of different methods and procedures were used: forest plots and respective statistics, polynomial regression, meta-regression, subgroup influence, quality assessment, and trim-and-fill analysis. 29 studies and 11,290 individuals were assessed. The average time patients were in haemodialysis varied from 23.5 to 56.3 months. Prevalence of HCV infection was highly heterogeneous, with a pronounced decrease from 1992 to 2001, followed by a plateau and a slight decrease in recent years. The summary measure for HCV prevalence was 34% (95% CI 26-43%) for studies implemented before 2001. For studies implemented after 2001, the corresponding summary measure was 11% (95% CI 8-15%). Estimates for prevalence of active HCV infection were also highly heterogeneous. There was a marked decline from 1996 to 2001, followed by a plateau and a slight increase after 2010. The summary measure for active HCV infection was 19% (95% CI 15-25%) in studies carried out before 2001. For studies implemented after 2001, the corresponding summary measure was 9% (95% CI 6-13%). Heterogeneity was pervasive, but different analyses helped to identify its underlying sources. Besides the year each study was conducted, the findings differed markedly between geographic regions and were heavily influenced by the size of the studies and publication biases. Our systematic review and meta-analysis documented a substantial decline in HCV prevalence among Brazilian haemodialysis patients from 1992 to 2015. CKD should be targeted with specific interventions to prevent HCV infection, and if prevention fails, prompt diagnosis and treatment. Although the goal of HCV elimination by 2030 in Brazil remains elusive, it is necessary to adopt measures to achieve micro-elimination and to launch initiatives towards targeted interventions to curb the spread of HCV in people with CKD, among other high-risk groups. This is of particular concern in the context of a protracted COVID-19 pandemic and a major economic and political crisis.


Subject(s)
COVID-19/diagnosis , Hepacivirus/genetics , Hepatitis C/diagnosis , Renal Dialysis/statistics & numerical data , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Hepacivirus/physiology , Hepatitis C/epidemiology , Hepatitis C/virology , Humans , Nucleic Acid Amplification Techniques/methods , Pandemics , Prevalence , RNA, Viral/genetics , Renal Dialysis/methods , SARS-CoV-2/physiology
3.
Cell Rep ; 37(8): 110049, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1509642

ABSTRACT

Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.


Subject(s)
Autophagy/physiology , Hepacivirus/physiology , SARS-CoV-2/physiology , Viral Replication Compartments/metabolism , Autophagosomes/metabolism , Carrier Proteins/metabolism , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Phosphatidylinositol Phosphates/metabolism , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/metabolism , Virus Replication
4.
Viruses ; 13(4)2021 04 03.
Article in English | MEDLINE | ID: covidwho-1389536

ABSTRACT

Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium-revealed by the changing composition of the mutant spectrum-may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.


Subject(s)
Hepacivirus/genetics , Hepacivirus/physiology , Hepatitis C/virology , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Drug Resistance, Viral/drug effects , Hepacivirus/drug effects , Humans , Mutation , RNA, Viral , Ribavirin/pharmacology , Sequence Analysis , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
5.
Microbiol Spectr ; 9(1): e0043921, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1329042

ABSTRACT

Hepatitis C virus (HCV) can cause acute and chronic infection that is associated with considerable liver-related morbidity and mortality. In recent years, there has been a shift in the treatment paradigm with the discovery and approval of agents that target specific proteins vital for viral replication. We employed a cell culture-adapted strain of HCV and human hepatoma-derived cells lines to test the effects of our novel small-molecule compound (AO13) on HCV. Virus inhibition was tested by analyzing RNA replication, protein expression, and virus production in virus-infected cells treated with AO13. Treatment with AO13 inhibited virus spread in cell culture and showed a 100-fold reduction in the levels of infectious virus production. AO13 significantly reduced the level of viral RNA contained within cell culture fluids and reduced the cellular levels of HCV core protein, suggesting that the compound might act on a late step in the viral life cycle. Finally, we observed that AO13 did not affect the release of infectious virus from infected cells. Docking studies and molecular dynamics analyses suggested that AO13 might target the NS5B RNA polymerase, however, real-time RT-PCR analyses of cellular levels of HCV RNA showed only an ∼2-fold reduction in viral RNA levels in the presence of AO13. Taken together, this study revealed that AO13 showed consistent, but low-level antiviral effect against HCV, although the mechanism of action remains unclear. IMPORTANCE The discovery of curative antiviral drugs for a chronic disease such as HCV infection has encouraged drug discovery in the context of other viruses for which no curative drugs currently exist. Since we currently face a novel virus that has caused a pandemic, the need for new antiviral agents is more apparent than ever. We describe here a novel compound that shows a modest antiviral effect against HCV that could serve as a lead compound for future drug development against other important viruses such as SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Cell Culture Techniques , Hepacivirus/drug effects , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular , Cell Line , Hepacivirus/genetics , Hepacivirus/physiology , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Life Cycle Stages , Liver , Liver Neoplasms , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Release/drug effects
6.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983187

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
7.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-910292

ABSTRACT

Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.


Subject(s)
Hepacivirus/physiology , Viral Envelope Proteins/metabolism , Antibody Affinity , Gene Knockdown Techniques , HEK293 Cells , Hepacivirus/immunology , Hepatitis C/virology , Hepatitis C Antibodies/immunology , Hepatitis C Antigens/immunology , Hepatitis C Antigens/metabolism , Humans , Mannose/chemistry , Polysaccharides/chemistry , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Tetraspanin 28/genetics , Tetraspanin 28/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
8.
Trends Microbiol ; 28(12): 1022-1033, 2020 12.
Article in English | MEDLINE | ID: covidwho-593617

ABSTRACT

Viruses, as obligate intracellular parasites, exploit cellular pathways and resources in a variety of fascinating ways. A striking example of this is the remodelling of intracellular membranes into specialized structures that support the replication of positive-sense ssRNA (+RNA) viruses infecting eukaryotes. These distinct forms of virus-induced structures include double-membrane vesicles (DMVs), found during viral infections as diverse and notorious as those of coronaviruses, enteroviruses, noroviruses, or hepatitis C virus. Our understanding of these DMVs has evolved over the past 15 years thanks to advances in imaging techniques and modern molecular biology tools. In this article, we review contemporary understanding of the biogenesis, structure, and function of virus-induced DMVs as well as the open questions posed by these intriguing structures.


Subject(s)
Intracellular Membranes/virology , Virus Replication/physiology , Animals , Coronavirus/physiology , Enterovirus/physiology , Hepacivirus/physiology , Hepatitis C/virology , Host Microbial Interactions/physiology , Humans , Norovirus/physiology , Organelle Biogenesis , RNA, Viral , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL